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Abstract. Methods are presented for the calculation of wave forces on a vertically axisymmetric body arbitrarily
placed within a channel. Integral representations of singular solutions of the Helmholtz equation, called channel
multipoles here, are derived and these allow straightforward solution of the scattering problem for a vertical
cylinder extending throughout the depth. In contrast to previous methods there is no need to sum series of images.
These multipoles are also used in deriving an approximate solution valid when the radius of the cylinder is small
relative to the wavelength and channel width.

To solve for arbitrary shaped axisymmetric bodies, a plane-wave approximation is developed based on the
assumption that the wavelength is much less than the channel width. Comparisons with the accurate solution for a
vertical cylinder suggest that this approximate method performs well even when this assumption is clearly violated.
The results of calculations of wave forces on a truncated cylinder are also given.

All of the methods described may be applied just as easily to the case of an off-centre body as to a
centrally-placed body.

1. Introduction

To assist in the interpretation of results from the wave-tank testing of offshore structures
there is a need to quantify the effects of the tank walls. Perhaps the simplest geometry that
has been investigated is that of a vertical cylinder extending throughout the uniform depth of
a parallel-walled channel. On the basis of the linearised theory of water waves, the depth
dependence may be removed and the flow is found to be described by a solution of the
two-dimensional Helmholtz equation satisfying appropriate boundary and radiation condi-
tions. This is equivalent to a problem in the theory of electromagnetic waveguides, and the
case of the cylinder being centrally placed between the walls has received considerable
attention in the literature. For references to this body of work and its relation to the
water-wave problem, see Martin and Dalrymple [1] and Thomas [2]. In the context of water
waves, solutions of the scattering problem valid for any length of incident wave have been
given by Spring and Monkmeyer [3], using the method of images, and Thomas [2], using an
integral equation approach. The approach of Spring and Monkmeyer has been extended to
the scattering and radiation of waves by a truncated vertical cylinder by Yeung and Sphaier
[4, 5]. A feature of the work in references [2-5] is the need to sum slowly convergent series
of Hankel functions. Yeung and Sphaier [4] give a careful treatment of such series which
facilitates their accurate summation. In the present work, such series are, in effect, replaced
by integral representations which may be evaluated without much difficulty.

The method presented here is new in the context of channel scattering problems although
the basis of the idea is familiar in water waves. For example, Ursell [6] solved the
two-dimensional problem of scattering by a submerged, circular cylinder by constructing the
solution from an infinite set of multipole potentials. Each multipole individually satisfied all
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the conditions of the problem except the boundary condition on the cylinder surface. Ursell
expressed the solution as a sum over the multipoles, with unknown coefficients, and imposed
the final boundary condition to give an infinite system for those coefficients which is readily
solved by truncation. Subsequently, Thorne [7] derived a range of multipoles in two and
three dimensions that allow the straightforward solution of many problems. Following the
procedure used by Thorne, 'channel multipoles' are derived in Section 3 of the present
paper. Each multipole is a singular solution of the two-dimensional Helmholtz equation that
satisfies the boundary condition of no flow through the walls and the radiation conditions of
outgoing waves at large distances along the channel. A restricted set of these multipoles has
already been used by Callan, Linton and Evans [8] and McIver [9] in constructing solutions
for waves trapped by a vertical cylinder on the centre line of a channel. In Section 4, the full
set of multipoles are used to solve the scattering problem for a vertical cylinder arbitrarily
placed within the channel and extensive results are presented for the wave forces on such a
cylinder. In concurrent work, Linton and Evans [10] have used channel multipoles to
investigate the scattering and radiation of waves by a vertical cylinder on the centre line of a
channel.

Using these multipoles it is straightforward to construct new approximate solutions to the
channel scattering problem. In Section 5, a solution valid when the wavelength is much
greater than the cylinder radius is derived using the method of matched asymptotic
expansions building on the ideas used in water-wave scattering problems by Davis and
Leppington [11] and in channel problems by McIver [9].

Another useful approximation is based on the assumption that the wavelength is much less
than the channel width. This is a wide-spacing approximation in the sense that all of the
images in the channel walls are widely spaced on the scale of the wavelength so that, to a
first approximation, the waves scattered by each image appear as plane waves to the
remaining images. This 'plane-wave' approximation was introduced by Simon [12] to
investigate the performance of finite arrays of wave-energy devices. The method was
extended to include non-plane correction terms and applied to the scattering by arrays of
vertical cylinders by McIver and Evans [13] and to radiation within arrays of truncated
cylinders by McIver [14]. Simon [15] extended his work to an infinite line of bodies,
equivalent to a body in a channel, and preliminary results for a vertical cylinder are given by
McIver and Simon [16]. In both of those works, the results were found by summing over the
images. Here a more direct approach is used, in Section 6 approximations to the channel
multipoles are found, including the correction terms introduced by McIver and Evans [13].
In Section 7, these are used to solve the scattering problem for a truncated vertical cylinder
using the (assumed known) scattering coefficients for open water.

The results of calculations using all of the above methods are collected together and
compared in Section 8. Both of the approximate methods are shown to perform well when
compared with the accurate solution.

2. The vertical cylinder: formulation

An infinitely long channel of uniform depth h has parallel walls a distance 2b apart.
Cartesian coordinates are chosen with the origin in the mean free surface and midway
between the channel walls so that the x-axis is directed along the channel and the z-axis
vertically upwards. A vertical, circular cylinder of radius a extends throughout the depth and
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has its axis at (x, y) = (0, d). Plane polar coordinates r and 0 are defined by

x = r cos 0 and y - d = r sin 0 . (2.1)

The full geometry is illustrated in Fig. 1.
A plane wave of amplitude A and frequency w is incident from large negative x. Under the

usual assumptions of linear water-wave theory the time-harmonic flow may be described by a
velocity potential

(d(x, , z, t) = igA cosh k(z + h) (x, y) e- i 'd , (2.2)

where k is the wavenumber satisfying the dispersion relation

W2 = gk tanh kh, (2.3)

g is the acceleration due to gravity and N indicates that the real part is to be taken. The form
of the potential has been chosen to satisfy the linearised free-surface condition, on z = 0, and
the bed condition, on z = -h. The potential q) must satisfy the three-dimensional Laplace
equation so that, on substituting the form (2.2), the complex-valued function 0T(x, y) may
be seen to satisfy the Helmholtz equation. The incident wave is described by

q= ejk = eikX = ei Jn(kr)cosne (2.4)
n=0

(Abramowitz and Stegun [17], equations (9.1.44) and (9.1.45)), where

e = 1 , E = 2 n 1 (2.5)

and J, is a Bessel function. The total potential T is decomposed as

XT = 1 + 6. (2.6)

2b

Fig. 1. Definition sketch.
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The potential 4 describing the scattered wave field will then satisfy the Helmholtz equation,

2- + k 2 = 0 (2.7)
ax 8y2

in the fluid domain, the conditions of no flow through the channel walls,

=O on y = b (2.8)ay

and the cylinder surface,

a- = - a, on r = a, (2.9)
Or ar

and the radiation condition specifying that the scattered waves must be outgoing as Ixl- o.
The solution for 4 is expressed in terms of channel multipoles, derived in the following

section.

3. Derivation of channel multipoles

The channel multipoles derived here are singular solutions of the Helmholtz equation (2.7)
that, by construction, satisfy the conditions (2.8) on the channel wall and the radiation
condition. Each multipole is singular at the point (x, y) = (0, d), that is at r = 0 where r is a
polar coordinate as defined in (2.1). Two sets of multipoles are defined. The first, denoted
by 4,, have a singular part H, (kr) cos nO and the second set, denoted by n,, have a singular
part H,(kr) sin nO. Here, Hn denotes the Hankel function of the first kind and order n.

The basis of the derivation is the integral representation

1 -kxt-yk(y-d)
H. (kr) e e ein sin-lt dt, y > d , (3.1)

where y = (t2 - 1)1/2 = -i(1 - t2 )112, which follows from Twersky [18, equation (31)] after a
rotation of the axes through r/2. The path of integration runs beneath the branch point at
t = 1 and above that at t = -1. Define by

cosh T = t, sinh r = y . (3.2)

By combining (3.1) with a similar expression where n is replaced by -n and considering the
cases of odd and even n separately, it is easy to show that

in-1 e-ikxt-ykly-dl

Hn(kr) cos nO = e-it cosh nT dt (3.3)

and

H,(kr) sin nO = -sgn(y - d) e sinh nr dt, (3.4)
7r 3' Y
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where the results

cos(2n sin- t) = (-1)" cosh 2nT, cos((2n + 1) sin -1 t) = i(-1)n sinh(2n + 1)T,
(3.5)

sin(2n sin - t) = - i(-1) sinh 2nT, sin((2n + 1) sin-1 t) = (-1)" cosh(2n + 1)T

have been used.
Channel multipoles are constructed following the method of Thorne [7]. For the multi-

poles 4n corresponding to (3.3) write

in-1 o-

= Hn(kr) cos nO + (A(t) e k y - ) + B(t) e k y - ) cosh ndt . (3.6)

The boundary conditions (2.8) of no flow through the channel walls at y = +b give
simultaneous equations for the unknown functions A(t) and B(t) which, when solved, lead to

n = H (kr) cos nO

in-l _ e1k(y-d)(e-2-y + e2
-y) + e-yk(y-d)(e-2yA + e-2y) -

ikxt

+ - . e cosh nT dt,
2+r y sinh 2y, (3)

(3.7)

where and j/ = kb and v = kd. If the integral representation (3.3) is introduced into (3.7),
then this may be written

in-"1 fE cosh y(kly- dl - 2 pt) + cosh yk(y + d) -ikxt cosh .
n - sn - e cosh n- dt. (3.8)

TT J- ¥ y sinh 2y/

In general, the integrands in equations (3.7) and (3.8) have poles at the solutions of
23y = +imTr, where m is a non-negative integer. The corresponding values of t are tm
where

tm = (1 - (mTr/2g)2 )1/ 2 , m = 0, 1, 2 ... M (3.9)

tm = i((mrw1/21 t) 2 - 1)1/2, m > M + 1, (3.10)

and M is the integer satisfying

Mi < 2/ < (M + 1)T . (3.11)

The M + 1 poles given by (3.9) lie on the real t axis and give rise to propagating waves as
IxlI - . To obtain only outgoing waves the integration path must run beneath the poles on
the positive real axis and above the poles on the negative real axis. Applying the residue
theorem to evaluate the integral in (3.8) gives the alternative representation

(-isgn x)' eiklal+
- (-i sgn x) {ekII + E [cos(mj2 k(y - d))

+ (1) ky + e cosh (3.12)

+ (1)' COS ' k(y + d) t eik lx l tm cosh nm , (3.12)( 2A )] M 11~
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where

cosh rm = tm . (3.13)

For m 3 M + 1, t is imaginary and the corresponding terms in the above summation decay
exponentially as Ixl-- so that, for a given Az, there are only a finite number (1) of
propagating modes. If v = kd = O so that the singular point is on the centre line of the
channel then only even values of m contribute to the summation and all modes are
symmetric in y.

Channel multipoles /in corresponding to (3.4) are constructed in the same way and the
result is

n = H (kr) sin nO

in f eYk(Y d)(e-2y/ - e2:y) e-yk(y-d)(e-2t - e-2y) - ikx t 

+ y 3' sinh 2y/

The location of the poles and the choice of contour is the same as for (An above with the
exception that there are no longer poles at t +1. The representations corresponding to
(3.8) and (3.12) are

i= ' sgn(y - d) sinh y(kly - d -2 2) - sinh yk(y + d) -ikxt (3
4 -h e sinh n dt (3.15)
n T fr y sinh 2y/

and

-isgnx)n+" mTT A

,,= = Eixk(y - d)

(-1)m sin( k(y + d))t1 eikx m sinh n. (3.16)

If v = kd = 0 only the odd values of m contribute to the summation and all the modes are
antisymmetric in y. In addition, if /t < r/2 then all tm, with m odd, are pure imaginary and
there is no radiation of energy to infinity along the channel. These non-radiating antisymmet-
ric multipoles were used by Callan, Linton and Evans [8] and McIver [9] to construct trapped
wave solutions for a cylinder on the centre-line of a channel.

For the solution of the cylinder scattering problem it is necessary to expand the multipole
potentials in terms of the polar coordinates r and 0. The identity

e2Z(TT- l) = E TmJ (Z) (3.17)

(Abramowitz and Stegun [17], equation (9.1.41)) is used, where Jm is the Bessel function of
order m. Making the substitutions Z = kr and T= -ie r - i' gives

e-ikxtyk(y-d) = E em(-i)m(cosh mr cos mO ± i sinh mr sin mO)Jm(kr), (3.18)
m=0
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where em is defined by equation (2.5). Inserting (3.18) into (3.7) and (3.14) gives

n = Hn(kr) cos nO + E (anm COS mO + Onm sin mO)Jm(kr), (3.19)
m=O

where

Em(-i)n+l y e2y +cosh2yv
anm = _-- ' cesinh2y+ cosh m cosh n dt, (3.20)ITT yJ-Xo 3 sinh 2/

- 2(-i)m -n f_ ysinh 2yv sinh mr cosh nr dt, (3.21)
TT -= Ey sinh 2/

and

$ = Hn(kr) sin nO + E (anm cos mO + bnm sin mO)Jm(kr), (3.22)
m=O

where

"an = - a (i) m f sinh 2y cosh m sinh n dt, (3.23)
anm - i " J-e7 y sinh 2yA n

bnm 2(-i)m- 2 cosh2v sinh mr sinh nr dt . (3.24)
TW - y sinh 2yji

Note that 3no = bo = 0 for all n. The expansions (3.19) and (3.22) are valid for 0< r<
2(b - d).

The coefficients defined by (3.20-21) and (3.23-24) will be zero whenever the integrands
are odd functions of t. From equation (3.5) it may be observed that cosh 2nT and
sinh(2n + 1)T are even functions of t while sinh 2nT and cosh(2n + 1)T are odd functions of t.
Thus, anm and bnm are zero if m + n is odd while ,3nm and anm are zero if m + n is even. To
simplify the presentation of the solution to the scattering problem the full expansions in
(3.19) and (3.22) will be retained.

4. The vertical cylinder: full solution

The scattered wave field is expressed as a sum of channel multipoles in the form

4) = E Enin(Ankn + Bnin). (4.1)
n =O

There is no multiple i0, but to obtain a compact notation it has been included in (4.1) with
the implicit assumption that Bo = 0. By the construction of the multipoles, equation (4.1)
satisfies all the conditions of the problem except the body boundary condition. Substituting
the polar coordinate expansions (3.19) and (3.22) into (4.1) and interchanging the order of
the summations gives
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= I Ein'(A , cos nO + Bn sin nO)H(kr)
n=o

+ [cos nO EpiP(Ap apn + Bpapn) + sin nO EpiP(Ap3pn + Bpbpn)]Jn(kr)) -

(4.2)

Applying the body boundary condition (2.9) and using the orthogonality over (0, 2,r) of the
functions {cos nO, n 3 0} and {sin nO, n 1}, gives the two sets of simultaneous equations

AnEin Qn + EpiP(Ap apn + Bpapn) = - Ein , n 0 (4.3)
p=

and

Bneni"nQn + I EpiP(Ap,[pn + Bpbpn) =0, n 1, (4.4)
p=

0

where

H;(ka)
n H (ka) (4.5)

- J (ka)

The systems (4.3) and (4.4) may be solved by truncation.
Following Linton and Evans [19], the summations over p in (4.3) and (4.4) may be

substituted back into (4.2) to obtain a simplified form for the potential on or near the
cylinder. Thus

+4 = > enin(An COS nO + Bn sin nO)(H(kr) - QnJn(kr)) - eniJn(kr) cos nO . (4.6)
n=0 n=O

The final term in (4.6) is just the incident wave (2.4). When evaluated on the cylinder r = a
then

H(ka)-ka) - QrkaJka)a) ' (4.7)
7TkaJn(ka)

where a Wronskian relation for Bessel functions (Abramowitz and Stegun [17], equation
(9.1.16)) has been used. Thus the total potential evaluated on the cylinder surface is

2i n ef"
rT = 4 + rka , J'(ka) C(A n cos nO + B sin nO) . (4.8)

The first-order forces on the cylinder are found by integrating the pressure over the
surface. The subscript j is used to denote either the x or y component of the force. The
pressure is given in terms of the potential 4, defined in equation (2.2), by the linearised
Bernoulli equation and so the horizontal components of the force are N{f ei'} where

_ pgaA tanh kh 4Ilr=a n d(4.9)
k ~f2 
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and nj is the appropriate component of the outward normal to the cylinder surface
(nx = cos 0, ny = sin 0). Substitution of the total potential given in equation (4.8) yields

fx_ 4pgA tanh kh f 1 (
f }=k k2J'(ka) LB (4.10)

If the cylinder is in open water the in-line force is

f(O) = 4pgA tanh kh
k2Hl(ka)

(MacCamy and Fuchs [20]) and, so relative to the open water case, the forces are

f '"' -&1~1 (4.12)Fx = f({) -- QlAl and Fy-f(o) - -Q 1B 1 . (4.12)

5. The vertical cylinder: small radius solution

Here an approximate solution to the cylinder scattering problem, formulated in Section 2, is
derived under the assumptions that the radius of the cylinder is small relative to the
wavelength, that is E - ka < 1, and that the wavelength and channel width are of the same
order of magnitude, that is -= kb = 0(1). A consequence of these assumptions is that the
cylinder radius is much less than the channel width, that is a < b. For simplicity, it will also
be assumed that the cylinder is not close to one of the channel walls, so that Idl < b, but a
solution without this restriction could be derived along similar lines. The solution is by the
method of matched asymptotic expansions and requires that the flow domain be divided into
two regions. The inner region surrounds the cylinder to distances r k - and the outer
region is external to this at distances r> a. Solutions containing unknown constants are
constructed separately in the two regions and, with the assumption ka < 1, they can be fully
determined by matching in an overlap region.

For the inner region, around the cylinder, define scaled coordinates with origin at the
cylinder axis by

x y-d r=- , = (5.1)
a a a

The inner scattered potential Ti( , () (x, y) satisfies the field equation (2.7) and the
body boundary condition (2.9) which, in terms of the inner coordinates, are

V
2 Ii + E2t i = 0 (5.2)

and

da = -d-a (e
i

)= - ie cos 0 + e2 cs 20 + i 3cos3 0 + O(E
4 ) on e = 1 (5.3)

respectively.
Scaled outer coordinates are defined by

X= kx , Y= k(y- d) , R= kr. (5.4)
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The outer region solution (X, Y) - O(x, y) must satisfy all the conditions of the problem
except for the body boundary condition (2.9). As with the full solution, the outer solution
will be constructed from the channel multipoles derived in Section 3 but now expressed in
terms of the outer variables (5.4).

From (5.2), the leading order inner solution for E < 1 is harmonic and the body boundary
condition (5.3) is satisfied to leading order by

IP) = i (5.5)

where PI') denotes the inner solution to order in E. Strictly, possible solutions of the
homogeneous problem should be allowed for here and at lower orders, but these cannot be
matched with the leading order inner expansion of any of the (singular) multipoles and so are
omitted. When expressed in outer coordinates (5.5) gives

,l(1,2) = 2i COS 0 (5.6)

where ptym) denotes the inner solution to order I in E rewritten in terms of the outer
variables and expanded to order m. A similar notation is used for the outer potential ToP.
Thus (om ) denotes the order m outer solution which when rewritten in terms of the inner
variables and expanded to order is denoted by (om't) . The matching principle requires

tp
'

(
m ) -

tm'l) (see, for example, Crighton and Leppington [21]).
The outer expansion (5.6) indicates that the leading-order outer solution is at O(E2), will

contain terms no more singular than R- and have no dipole term with a sin 0 dependence.
Thus

0'2) = E2{A + All)} , (5.7)

where the 0, are the channel multipoles defined by equation (3.7) and A 0 and A1 are
constants to be found from the matching. It follows from the expansion of An in terms of
polar coordinates, equation (3.19), that the inner expansion of (5.7) is

AI(o2'2) E 2 }A1 + 2a / Ee l+ [2 cos + (5.8)

where the required expansions of Bessel functions are given by Abramowitz and Stegun [17,
p. 360] and C is Euler's constant. From (5.8), (o2 ,2) contains terms at orders E, E2 In E and
e

2. To be able to match with this the inner solution must have the form

2)= Ei _ In Ti,2 i,2 (5.9)

This inner solution is substituted into equations (5.2-3), and the coefficients of like gauge
functions in E equated. This shows that ti,21 is a harmonic function satisfying a homogeneous
body boundary condition. Possible solutions are of the form

cos nO
( + ){ sin n n = 0, 1, 2... (5.10)

but, apart from constants, these solutions grow too fast as Qe-o to be matched with (5.8).
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Also, Pi, 2 is a harmonic function satisfying the body boundary condition

= cos2 = (1 + cos 20) on e = 1 (5.11)

and a particular solution is

1 (/ n cos 20' 
i,2=2 in - 2e2 (5.12)

To this may be added the solutions, given in (5.10), of the homogeneous problem but again
only constants are suitable. Thus,

i -2) +In E2 B + 2 In - 4os2 (5.13)
0 { 1 42 j

which has an outer expansion

t',2.2) = i c os + In B + Bl + In Q (5.14)

when written in terms of inner coordinates. Matching (5.14) with (5.8) gives

z- Ir 2i 1
Al 2 A o= - 4 , Bo= - A = -2 '

B1 = A 0 (1 + (C- In 2) + o) (5.15)

So, from (5.7), the leading-order outer solution is

2) E2 i } (5.16)

o0=-E 2 2 0 + 1

(Using the first term in the expansion (3.12) of O., approximations to the reflection and
transmission coefficients, -E 237ri/4,/ and 1 + E2rri/4,1 respectively, may be obtained in
agreement with Twersky [18].)

The correct development of the inner solution may be deduced from the inner expansion
of (5.16),

(2,3) IT( 12i E Q 1
0 =- 21 - (In C + C) 0 + +f0sin 0 2 E

+ [.-+- I ( 1 - (1 - 2C + 2 In 2) + all cos . (5.17)
IT - 7r 2 7rI

In addition to those that have already arisen in p(22), equation (5.8), there are terms at
orders E3 In E and E3 and this must be reflected in the inner solution. From equations
(5.2-3), the term at O(E3 In E) in the inner solution will be harmonic and satisfy a
homogeneous condition while the O(E3 ) inner potential will satisfy a non-homogeneous field
equation and boundary condition. Hence, the inner solution continues as

I3) = t/2) + E In e(B 2( + B3 (Q + Q ) cos /} + E (i,3 (5.18)
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where the homogeneous solutions at O(e3 In e) have been chosen to allow matching with
(5.17) and, from (5.2), Ti3 satisfies

V2i, 3 - i os-- (5.19)

in the fluid and, from (5.3), the boundary condition

2o = 
ccos 30= +3cos 0 on =1. (5.20)

aQ 2 8 '

A particular solution of (5.19-20), together with suitable homogeneous solutions to allow
matching with (5.17), is

i ( 1 cos30 7 cos O+ +(+)(Bss + BOsin0)
ki,3 2 - 1~ oln2 cos0 +T 129@3 + 4 @ (5.21)

and so the inner expansion of p(3 ) is

ts2 = 2i O S + 2 { B n + IIn l In E{B2 + B3Q cos 0}

+ E -2 @ IlnQcos 0 + B5 cos 0 + B6 Q sin0 . (5.22)

Matching (5.22) with the inner expansion of the outer solution (5.17) gives

w( i IT i
B2 =0, B3 =-- B =- 1- -(1-2C + 2 In 2 ) all B6 = - (5.23)

To summarise, the leading-order outer solution is given by (5.16) and the inner solution to
O(E3) is

3)= e os 1 2 + 2o 20 cos23 } os i

@ 2 492 - l n8(+@-)cos0
+ -2 E In E 7 i O 2 + B. + ( +@ ) 

+ E 3{ Q In Q cos -n 24 i 3 os +

X (B 5 cos 0 + B6 sin 0)}, (5.24)

where B. is given by (5.15), B5 and B6 by (5.23) and B4 is undetermined.
The wave forces on the cylinder are given by (4.9). For consistency the incident wave

potential (2.4) must be approximated by its inner expansion. Evaluating this on the cylinder,
the only term that contributes to the forces is

2 iJ(E) cos o = iE(1 - 8 E2) Cos 0 + O() . (5.25)



Scattering of water waves 13

Using this and the inner scattered potential (5.24) in (4.9) gives the force components

PgaA tanh kh 71 {2i- i In - 1 e2[7r(l + a,,) + i(l + 2C - 2 In 2)] + o(E2)

(5.26)

and

gaA = tanh kh 1 3 ol + o(e3). (5.27)

Most of the terms in (5.26) may be accounted for by the expansions in = ka of the exact
open-water result (4.11). The in-line force ratio is calculated by taking the expansion in of
the open-water result which gives

Fx =fxf ) = 1 + o(2 2 ). (5.28)

Similarly, the force ratio for the cross-channel direction is

Fy =y/f(ol)= 8 P1 (5.29)

The coefficients a1 l and 301 depend on / = kb so that calculation of the limit of the force
ratios, as the waves become long relative to all other lengths, requires careful consideration.
The substitution given by equation (A2) into the definition of a (3.20) leads to the
approximation for small Ai

i i e-s + cosh(sd/b) s ds
a - 2 J sinh s

2 (25[2, 1] + 5[2, (1- dlb)/2] + 5[2, (1 + d/b)/2]) (5.30)

by Gradshteyn and Ryzhik [22, equation 3.552], where is the Riemann zeta function. For a
centrally-placed body this reduces to

zi
a11 - 2 (5.31)

which from (5.28) gives a long wave limit for the in-line force ratio of

7a22
ira

Fx = 1 + 12b 2 . (5.32)

It should be remembered that it was initially assumed that a 4 b so that (5.32) is not an exact
result. A similar calculation shows that, for arbitrary d, 301 = O( /-1) as A - 0 so that from
(5.29) the transverse force ratio F is zero in the long-wave limit (for a centrally placed
cylinder, d = 0, F is identically zero for all wavelengths).
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6. Plane wave approximation of channel multipoles

A solution method will be given for the problem of scattering by a general axisymmetric
body based on a wide spacing approximation. As a first step approximations are derived for
the multipole potentials valid for , = kb > 1.

Define

n = An - H.(kr) cos nO (6.1)

where b, is given by equation (3.7). Each On may be thought of as describing the image set
for the corresponding fundamental singular solution. The aim is to obtain an approximation
to 0n for large 1 that is valid near the body. The cases n even and odd will be considered
separately. For n even put n = 2N then from Gradshteyn and Ryzhik [22, equations 1.331]

cosh 2NT = (-l)NQ(t), (6.2)

where

Q(t) = (1 - 2N2t2 + . . . ) (6.3)

is a polynomial in t2 of degree N. By considering the even and odd parts of the integrand,

t2N may be written as a semi-infinite integral

02N = 1 Jo (e'YG(y) + e -'G 2 (y)) cos Xt Q(t) dt, (6.4)

where

X= R cos 0 = kx and Y = R sin 0 = k(y - d) (6.5)

and

2yA 2yv e-2y,, + e-2y,

G(y)= sinh2 , G2 () sinh2= (6.6)sinh 2yg sinh 2yi

Make the change of integration variable

t=e i'4s (+ s4 )} = (i 2) (6.7)

and deform the contour onto the real x axis in the way described in appendix A to get

02N = 2- i 1 (eYGl(y) + e-VYG 2(y)) cos Xt Q( ds (6.8)

For convergence of the integral the restriction IYI <2(, - v), or y-dl <2(b-d), is
imposed. Now, from (6.7), for s < 41

t = *e 4 (1 + 8 +O) (6.9)
tLClril( + (
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so that for X, Y = 0(1) each term in the integrand of (6.8), with the exceptions of G1 (y)
and G2(y), may be expanded in powers of s. It is shown in Appendix B that the part of
the integral over the range 4 to is exponentially small as ---o, so this expansion
procedure leads to

d32N- e i (/2 (Y+ = i(X2+4N2 - ) ds
2l 2 e 0 112 + 2 4//

+eiYf G2 (j2) [1+2 (Y+i(x2 +4N - ds + O(2) (6.10)

A number of the terms in (6.10) may be identified immediately as plane waves propagat-
ing in the positive and negative y directions. For the purpose of force calculations the
remaining terms may be replaced by equivalent plane waves. The potential on the body,
needed for force calculations, may be expressed as a Fourier series in the angle 0, defined in
equations (2.1). The vertical force on an axisymmetric body depends only on the constant
terms in the series and the horizontal forces depend only on the sin 0 and cos 0 terms.
Equivalent plane waves are chosen to have the same constant and first harmonic terms as the
non-plane terms in (6.10). Now from Abramowitz and Stegun [17, equations (9.1.42-43)],

e iY(Y + iX2) = { E (EmJ 2m(R) cos2m - 2iJ 2m+l(R) sin(2m + 1)))

x RsinO+-- iR 1+cos2O) (6.11)

so that the constant and first harmonic components can be isolated using elementary
trigonometric identities. Of these, the only non-zero term is 2J(R) sin 0 which is the first
harmonic term in the expansion of sin Y. Thus

e-iY(Y + iX 2 ) sin Y (6.12)

in the sense that they will both lead to the same wave forces on an axisymmetric body.
Inserting (6.12), and a similar expression with Y replaced by -Y, into (6.10) gives the
equivalent plane-wave representation

2N = 2'i I4 {01 e-'Y + 02 e + II (i(4N2 - e +sin Y)
2,rr/2/2 y0 + ~ -- +s

+ I 12(i(4N -)ei - sin Y)]+ O( L)) (6.13)

where

Ipq = o sp 1 12 Gq(y) ds . (6.14)

Note that the effect of the images is 0(-1 1 /2). The integrals in (6.14) are similar to those
used by Yeung and Sphaier [4, 5] to help in summing over the images.

Similar results follow for the remaining multipoles. The procedures follow closely that
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detailed above so only the main results will be given. For n odd put n = 2N + 1 then the
expansion for large is

2N~l 2 N+1)ei-/4 4{ 49 f

=2N+1 73/ 2 e- i() ds + s/ 2 G(y)) ds + O( ) .

(6.15)

For the purposes of force calculations

e -ivYX sin X, (6.16)

thus the equivalent plane-wave representation is

(2N + 1) e i /4

2N+1= - (2N +1)e/2 (I, + I,,2) sin X + O(-5) (6.17)

For the second set of multipoles define

q = ¢ - Hn(kr) sin nO, (6.18)

where qi, is given by equation (3.14). For even n = 2N, the expansion for large , is

3i7 14 4 2 41 1

¢2N = - e 3 {eYx J s1 12G3 (y) ds - e'YX f s 2 G4 (y) ds + O( -
pl) (6.19)

and, using (6.16), this has the equivalent plane-wave representation

N 3 i~r /4

P2N 1= N 3/2 (1I3 -114) sin X + O( , (6.20)
7rT/

where Ipq is defined by (6.14) and

e-2y e
2

-2 _ -
2

y 2 -2yv

G3('Y) = G Jy) =(6.21)sinh 2yu ' 4 () sinh 2y (6.21)

Finally, for odd n = 2N + 1, the expansion for large / is

2N = fe [ ( Y+i( + 4N(N + 1)+ ] ds

-e C 4(Y) [1+ 2 . (Y + i( + 4N(N + 1) + ))] ds Jo 1// 2 /2e 
i

(6.22)

which has the equivalent plane-wave representation

2N+1 2/2 103 e -4 e' + - [(13(i(4N(N+ + 1) + sin )
21ir'2 3 0+2t [ 1 , /

i 4 (i(4N(N + 1) + 3 ie'Y - sin Y)]+ 0,2)O (6.23)4-
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7. Plane wave approximation for scattering by axisymmetric bodies

The scattering of a plane wave by a general axisymmetric body in a channel is now
considered. The boundary value problem to be solved is similar to that described in Section 2
for the vertical cylinders. The only point of difference is that the body boundary condition is
generalized to

ao =- ao (7.1)
an an

on the body surface, where n is a coordinate measured normal to the body.
Sufficiently far from the body for evanescent modes to be negligible, the scattered wave

field has the following expansion in terms of the channel multipoles derived in section 3:

= Enin(An4n + B,4n) (7.2)
n=O

For the vertical cylinder, treated in Section 4, there are no evanescent modes and this
representation is exact. Introducing the decomposition of the multipoles given in equations
(6.1) and (6.18), equation (7.2) may be written

, = A e,i'H,(kr)(A cos nO + Bn sin nO) + , (7.3)
n=O

where

t = ei(Ad) + Bn) (7.4)
n=O

As before a fictitious multipole ¢p0 has been retained for convenience so that there is the
implicit assumption that B0 = 0. The non-singular parts of the multipole potentials, in and
i, are the corrections to the open water multipoles resulting from the presence of the

channel walls. Thus, ~ may be thought of as the total wave field incident upon the body as a
result of all scattering by the images in the walls. Each image scatters the incident wave (2.4)
and the waves emanating from the remaining images and the body itself. In turn, f and the
incident wave (2.4) are scattered by the body to give the outgoing waves described by the
explicit summation in equation (7.3).

For A > 1, so that the channel walls are widely spaced compared to the wavelength, the
non-singular parts of the multipole potentials can be approximated using equations (6.13),
(6.17), (6.20) and (6.23) to obtain

d = (C' + D1) e-i k( y - d) + (C2 + D2 ) eik(y- d) + D 3 sin kx + O(/-5S2) (7.5)

where

C, = S E (-1)(enA2 I- 2B 2n+iI03), (7.6)
n=O

C2 = S E (-1)n(enA 2nIo2 + 2B2,+1 04 ) (7.7)
n=O
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2 1= (-1) [nA2n((4n + -1 l2)

- 2B2n+l((4n(n + 1) + )13 + 14)] (7.8)

D2 = (-1) [eA 2n((4n + ) 12 2 Il)

+ 2B2n+l((4n(n + 1) + 1 2 13) (79)

D3 = 2S (-1) n [(2n + 1)A 2 n+(Ill + I12) + 2nB2 n(I13 -I14)] (7.10)

and

-ir4

S= 2 (7.11)

Note that C = O( -l/2), j = 1, 2 and Dj = O(,t-3/ 2 ), j =1, 2, 3. To leading order, the
waves scattered by the image bodies appear as plane waves propagating along the line of the
images when observed in the vicinity of the original body. So to a first approximation the
body can be regarded as being in open water, that is with no channel walls, under the action
of a total incident wave

¢, ,eikX + C e ik(y-d) + C2 eik(yd) = eikr os + eikr cos(O-+r/2) + C2 eikr cos(° - ' r /2)

(7.12)

Suppose that the scattering properties of the body when in open water are known. That is,
for an incident wave e ik, sufficiently far from the body for evanescent modes to be negligibly
small, the solution for the scattered field may be written

(o) = j inA(°)H(kr) cos nO , (7.13)
n =0

where the open water scattering coefficients { A(), n = 0, 1, 2...} are known. The scattered
field due to the incident wave (7.12) will be

<- = e [inA)Hn(kr)(cos nO + C1 cos n(O + r/2) + C2 cos n(O - r/2)). (7.14)
n =0

Comparing (7.14) with (7.3) gives

A n = A()[1 + (Cl + C2) cos T (7.15)

and

niT
=-A nA(C, - C2) sin - (7.16)no 2r
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Substitution of (7.15-16) into (7.6-7) and rearranging gives the simultaneous equations

(,0 n=O n(, n0Cl~-S E EA + ,- (o) _ 2103 E A2n+1)]

= sl E (-1)n A(o) (7.17)
n=0

and

C2[1 S- (102 E EnA + 21o4 E A20n+ 1) -C 1S( 0 2 i E - 2104 , A2n)+)

n=0 n=0 n=0 n=O

S02 (_-1) nA2n) (7.18)
n-0

which may be readily solved for C and C2.
The scattering of the correction terms, the waves with amplitude D1, has been neglected in

calculating the primary wave amplitudes Cj. Thus, in equations (7.17-18), terms of 0(A 2 )

have been neglected giving errors of the same magnitude in C and C2 . The correction
amplitudes D. can be calculated to the same order of accuracy by neglecting terms of
O(p-1 12) in the scattering coefficients of (7.15-16), that is, by using An - An) and Bn - 0 in
(7.8-10).

The wave forces on the body follow very simply from (7.5). If f () is the in-line first-order
force in open water then, allowing for the phases of the different waves in (7.5), the x and
y-components are respectively

fx =f()(l - iD3 ) and fy =f()( C - D, + C2 + D2) . (7.19)

8. Results

All of the results for forces given in this section are scaled by the in-line force on that body
when it is placed in open water. To keep the amount of data manageable, results are given
only for horizontal components of the force. Results for vertical forces on a truncated
cylinder may be found in Yeung and Sphaier [4] and truncated and full-cylinder reflection
coefficients in Linton and Evans [10]. Both of these papers consider the case of a
centrally-placed body only.

The results in Figs 2-9 are all for a vertical cylinder extending throughout the depth and in
each figure comparison is made between the accurate solution method described in Section
4, the small-body solution of Section 5 and the plane-wave approximation of Section 7. The
small-body solution assumes that the cylinder radius a is much less than the channel width b
and that kb = 0(1), where k is the wavenumber. Taken together these assumptions imply
ka 1. The fundamental assumption behind the plane-wave approximation was expressed as
kb o 1 but, more exactly, it is assumed that the distance between the body and its images in
the channel walls is much smaller than the wavelength. In terms of the geometrical
parameters in Fig. 1, this may be expressed as k(b - (a + Id)) >1.

In Fig. 2 the modulus of the in-line force F., defined by equations (4.9-12), is given as a
function of wave-number when the cylinder is on the centre-line of the channel. For Fig.
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k b/rr (a)

IFxI

ka

k b/-rr (b)

IFI

ka

Fig. 2. In-line force ratio IFxl v. ka. Comparison of full theory ( ) with small-body approximation (---) and
plane-wave approximation (***) for dib = 0 and (a) b/a = 20, (b) b/a = 5.

(2a), ba = 20 and there are resonant peaks in the curve at about kb = nr, or ka = n7r/20
where n is an integer, corresponding to poles of the integrand in equation (3.8) or, in
physical terms, to standing waves across the channel in the absence of the body. For all
cylinders of non-zero radius, detuning occurs and the resonant peaks in the force curves are
of finite height with the maxima not coinciding exactly with the cross-channel standing wave
frequencies kb = n. With the cylinder on the centre-line of the channel only the standing-
waves symmetric in y give rise to peaks in the force curves. For fig. 2(b), b/a = 5 and there is
only a single peak in the range of ka given. In both of these figures, the plane wave method
performs well for all except the very longest waves, down to values of kb - 0.5, despite the
fact that the plane-wave method was derived under the assumption kb > 1. As might be
anticipated, the better agreement is obtained for the wider channel relative to the cylinder



Scattering of water waves 21

radius when the body is far from its images. Note that without the correction term in (7.19)
the plane-wave method gives Fx = fxIf() 1 for all frequencies. The small-body solution is
complementary to the plane-wave approximation in that it performs best for long waves. As
the long-wave limit is approached, the results are indistinguishable from the full solution for
bla = 20 but there are minor discrepancies for b/a = 5. This is not surprising as the
small-body solution was derived under the assumption that b > a.

In Fig. 3 are results for in-line (x) and cross-channel (y) forces when the cylinder is offset
from the channel centre line by a distance d = 0.25b with bla = 5. Comparison of Fig. 3(a)
with Fig. 2(b) shows that there are additional peaks roughly corresponding to the antisym-
metric standing waves at kb = (n + 1/2)r. With the offset cylinder the height of the peak

k b/ir

1.14

1.12

1.10

1.08

IF I 1.06

1.04

1.02

1.00

0.98

0.96

(a)

ka

k b/r

IFyl

(b)

ka
Fig. 3. Modulus of force ratio v. ka. Comparison of full theory ( ) with small-body approximation (---) and
plane-wave approximation (***) for b/a = 5, d/b = 0.25. (a) In-line force IFx[, (b) cross-channel force IFyI.
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corresponding to the symmetric standing wave is much reduced. The cross-channel force,
Fig. 3(b), displays very strong peaks though they remain finite.

For a fixed circular cylinder on the centre plane of the channel, trapped wave solutions
exist [8, 9]. These are free oscillations of the fluid that decay along the channel (and so are of
finite energy) and which are anti-symmetric about the channel centre plane. The trapped-
wave solutions exist at discrete frequencies that depend on the cylinder radius and the
channel width. The existence of these solutions leads to characteristic resonances for an
antisymmetric forced motion, for example they are observed if the cylinder is forced to sway
in the cross-channel direction [10]. The scattering problem is symmetric about the channel
centre plane and therefore no resonance is observed at a trapping frequency. There is no
evidence that trapped-wave solutions exist for cylinders offset from the channel centre plane
and this is supported by the lack of unexplained resonances in Fig. 3.

In Figs 4-7, results are given for offset cylinders with the wave forces given as a function
of the off-centre distance dib for fixed wavenumber ka and channel width ba. Figures 4-5

IFj

d/b

"I\

IFIy

d/b
Fig. 4. Modulus of force ratio v. db. Comparison of full theory ( ) with small-body approximation (---) and
plane-wave approximation (***) for b/a = 20, ka = 0.3. (a) In-line force FI, (b) cross-channel force IFyl.
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IFI

d/b

(a)

IF'I

d/b

(b)

Fig. 5. Modulus of force ratio v. db. Comparison of full theory ( ) with small-body approximation (---) and
plane-wave approximation (***) for b/a = 5, ka = 0.3. (a) In-line force IFjx, (b) cross-channel force IFyI.

have ka = 0.3, which is close to the first antisymmetric standing wave resonance, while Figs
6-7 have ka = 0.5, which is not close to any resonance. It might be anticipated that the
approximate solutions will perform less well near a resonance. However, both approximate
solutions maintain good accuracy except for the small-body solution in Fig. 5(b). Away from
resonance, the corresponding results show an improvement in accuracy. It is noteworthy that
the plane-wave method consistently gives a better approximation to the x-force than the
y-force. Both x and y components of the force oscillate with the off-centre distance but for
all sets of parameters the y-force is the more oscillatory. This is presumably the result of
standing waves set up between the body and channel walls at certain offsets. At the higher
frequency, Figs 6-7, there are more oscillations.



24 P. Mclver and G.S. Bennett

d/b

(a)

0.07

0.06

0.05

IF 't 0.04

0.03

0.02

0.o0

d/b

(b)

Fig. 6. Modulus of force ratio v. db. Comparison of full theory ( ) with small-body approximation (---) and
plane-wave approximation (***) for b/a = 20, ka = 0.5. (a) In-line force IFl, (b) cross-channel force F.

The remaining results, Figs 8-9, are for a truncated vertical cylinder of draught D floating
in water of depth h. For this set of results the values ba = 20 and bh = 1 are used
throughout. All calculations are by the plane-wave method described in Section 7 which
requires knowledges of the scattering coefficients of the body, defined by equation (7.13),
when in open water. These coefficients may be calculated using the method of Garrett [23].
Figure 8 gives the in-line force on a centrally-placed body for three different draughts. As
the draught is increased the motion is more sensitive to the channel resonances and the force
curves become more peaked. Finally, Fig. 9 gives the x- and y-forces at ka = 0.3 as a
function of off-centre distance for the same three draughts. The x-force ratio varies most
strongly for the deeper draft cylinders but it is noteworthy that the y-forces are larger,
relative to the in-line open-sea values, for the shallow draft body.
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(a)

Fig. 7. Modulus of force ratio v. db. Comparison of full
plane-wave approximation (***) for b/a = 5, ka = 0.5. (a)

k b/i

IFlI

d/b

theory ( ) with small-body approximation (---) and
In-line force IFx1, (b) cross-channel force IFYI.

ka
Fig. 8. In-line force ratio IFJI v. ka for truncated cylinders with draughts D/h = 1, ( ), Dlh = 0.2 (---) and
Dlh = 0.05 (---) for ba = 20, db = 0.
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IFI
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IFyl
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1.010

1.005

1.000

I Fx 0.995

0.990

0.986

d/b

(a)

IFyl

d/b

(b)

Fig. 9. Modulus of force ratio v. dib for truncated cylinders with draughts DIh = 1 ( ), D/h = 0.2 (---) and
D/h = 0.05 (---) for b/a = 20, ka = 0.3. (a) In-line force IFxl, (b) cross-channel force IFyI.

9. Conclusion

A variety of methods have been presented for the treatment of the scattering problem for a
vertically axisymmetric body of radius a placed arbitrarily between vertical channel walls a
distance b apart. A new 'accurate' formulation for the case of a circular cylinder extending
throughout the depth allows easier calculation than previous methods as there is no need to
sum series of image singularities. In addition, two approximate solution methods have been
given. The first is applicable only to the vertical cylinder and is based on the assumption that
the radius is much smaller than other lengths in the problem. Simple explicit expressions
were derived for the wave forces on the cylinder and found to agree very well with the
accurate solution up to about ka = 0.5, where k is the wavenumber. More importantly, this
solution describes qualitatively the features of the solution over the whole range of ka likely
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to be of practical interest. The second approximate solution is based on the assumption that
the bodies are widely separated from their images on the scale of the wavelength. This
'plane-wave' approximation may be applied to any axisymmetric body but requires previous
knowledge of the scattering properties of the body when in open water. Given this
information calculations are quite straightforward, the in-line force requires only summation
of a simple series and numerical evaluation of an integral. The plane-wave approximation
was compared with the full-vertical cylinder solution and found to give excellent results for
all but the very longest waves.

Appendix A: Numerical evaluation of multipole expansion coefficients

The channel multipole expansion coefficients are given by equations (3.20-21) and (3.23-
24). As indicated in Section 3, the coefficients with odd integrands are zero. The non-zero
coefficients with even integrands may be written as integrals over a semi-infinite range with
the modified integration path running beneath any poles in order to satisfy the radiation
condition. From Gradshteyn and Ryzhik [22, equations 1.331], each of the products of
hyperbolic functions in equations (3.20-21) and (3.23-24) may be expressed in the form
y PtqP(t), where P(t), P(O) # O, is a finite degree polynomial in t2 and p and q take the values
0, 1 or 2. Each of the expansion coefficients may then be written in the form

I= j F(y)yP-ltqP(t) dt, (Al)

where F(y) contains all the exponentials of 2y/t and 2yv. To evaluate the integral in its
present form requires careful consideration of the poles on the real axis. To avoid this
complication make the change of integration variable

ty = eu ( + - (A2)

In the s-plane all singularities lie on the imaginary axis and, in particular, the poles on the
it-axis are transformed onto 0 - s - 2/i. The integration path in the s-plane runs from the

origin to 2/ai along the imaginary axis, passing to the right of any poles, and then moves off
the axis and approaches s = 2 at as t-- oo. As all of the poles are on the imaginary axis, the
path of integration may now be deformed to run along the positive A1s-axis, which is free of
singularities, to give

I= 2If F(y)yPtq- P(t) ds (A3)

and this is easily evaluated numerically after first separating into real and imaginary parts.

Appendix B: Integral estimate

Here it is demonstrated that the contribution to the integral in (6.8) from the range (4,u, oc)
may be neglected. The function Q(t) is a polynomial of degree N in t2 and therefore, by
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(6.7), a polynomial of degree 2N in s. Thus, neglecting constant factors independent of /,
the general form of contributions to the first term on the right-hand side of (6.8) is

1 M
I =- f eYGl (y ) cos Xt - ds , 0 M 2N. (B1)

/2 'A t '1'

The aim is to obtain a bound for I. First of all, bounds are obtained for the component
factors in the integrand. For s > 0 and I YI < 2( / - ),

[e~'Y(y) = /eXi(e~2-(s-2Ai) +e(s-2'i)V'ilg <2 esYi
2

, e
- S

+ esv/l
|1 2 e (eS (S-2i) e-(Ss)I - e-

4 4
es(l Y1/2p-l) - e-s(l+Y/2g+l/) e 1 (B2)

where

3 =1- - >-0. (B3)

The first inequality in (B2) uses elementary inequalities for complex numbers and the
remaining steps use properties of the exponential function. From (6.7), for real, positive s,
0 I3t 1 and so

1
Icos Xtl 2 (leiX'l + le-ix'l) e l ex (B4)

Finally, for s 4,

={-(1 + 1S2 /254

Using these inequalities in the definition of I, equation (B1), gives

K1 f~ sM ds
l -l ¢ (B6)

where Kj, j = 1, 2, 3 are constants independent of A and M. The substitution s = 4/(u + 1)
gives

Il s K 2 (4)uMe-4 I 48Xp(u + 1 )M duIII -_foe _ (B7)

The integration in (B7) may be carried out using the result given by Gradshteyn and Ryzhik
[22, equation 3.411.22] and elementary inequalities finally give

III - K 3(M + 1)!( 4 2)M e- 4 3p . (B8)

A similar inequality holds for the contributions to the second term on the right-hand side of
(6.8). Thus, under the assumption that ,a > 1, the contribution to 2N from the integration
range (4 ,u, -o) is negligible compared to the terms retained in (6.10).
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